DocumentCode
805366
Title
Two-dimensional minimum free energy spectral estimation
Author
Kiernan, P.
Volume
142
Issue
3
fYear
1995
fDate
6/1/1995 12:00:00 AM
Firstpage
169
Lastpage
173
Abstract
The author proposes a 2-D extension of the minimum free energy (MFE) parameter estimation method which may be used to determine autoregressive (AR) model parameters for 2-D spectral estimation. The performance of the technique for spectral estimation of 2-D sinusoids in white noise is demonstrated by numerical example. It is seen that MFE can provide superior spectral estimation over that which can be achieved with the multidimensional Levinson algorithm with equivalent computational burden. The performance of the technique in terms of computational expense and accuracy of spectral estimation over a number of simulation trials is compared with a modified covariance technique
Keywords
autoregressive processes; covariance analysis; parameter estimation; spectral analysis; white noise; 2-D sinusoids; 2-D spectral estimation; autoregressive model parameters; computational expense; minimum free energy; modified covariance technique; numerical example; parameter estimation; two-dimensional estimation; white noise;
fLanguage
English
Journal_Title
Vision, Image and Signal Processing, IEE Proceedings -
Publisher
iet
ISSN
1350-245X
Type
jour
DOI
10.1049/ip-vis:19951802
Filename
393294
Link To Document