DocumentCode
807191
Title
Least squares stationary optimal control and the algebraic Riccati equation
Author
Willems, Jan C.
Author_Institution
Massachusetts Institute of Technology, Cambridge, MA, USA
Volume
16
Issue
6
fYear
1971
fDate
12/1/1971 12:00:00 AM
Firstpage
621
Lastpage
634
Abstract
The optimal control of linear systems with respect to quadratic performance criteria over an infinite time interval is treated. Both the case in which the terminal state is free and that in which the terminal state is constrained to be zero are treated. The integrand of the performance criterion is allowed to be fully quadratic in the control and the state without necessarily satisfying the definiteness conditions which are usually assumed in the standard regulator problem. Frequency-domain and time-domain conditions for the existence of solutions are derived. The algebraic Riccati equation is then examined, and a complete classification of all its solutions is presented. It is finally shown how the optimal control problems introduced in the beginning of the paper may be solved analytically via the algebraic Riccati equation.
Keywords
Algebraic Riccati equation (ARE); Least-squares optimization; Linear systems, time-invariant continuous-time; Optimal control; Riccati equations, algebraic; Control systems; Feedback control; Frequency domain analysis; Least squares methods; Linear systems; Optimal control; Regulators; Riccati equations; Stability criteria; Time domain analysis;
fLanguage
English
Journal_Title
Automatic Control, IEEE Transactions on
Publisher
ieee
ISSN
0018-9286
Type
jour
DOI
10.1109/TAC.1971.1099831
Filename
1099831
Link To Document