DocumentCode :
80856
Title :
Combating Negative Transfer From Predictive Distribution Differences
Author :
Chun-Wei Seah ; Yew-Soon Ong ; Tsang, Ivor W.
Author_Institution :
Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore
Volume :
43
Issue :
4
fYear :
2013
fDate :
Aug. 2013
Firstpage :
1153
Lastpage :
1165
Abstract :
Domain adaptation (DA), which leverages labeled data from related source domains, comes in handy when the label information of the target domain is scarce or unavailable. However, as the source data do not come from the same origin as that of the target domain, the predictive distributions of the source and target domains are likely to differ in reality. At the extreme, the predictive distributions of the source domains can differ completely from that of the target domain. In such case, using the learned source classifier to assist in the prediction of target data can result in prediction performance that is poorer than that with the omission of the source data. This phenomenon is established as negative transfer with impact known to be more severe in the multiclass context. To combat negative transfer due to differing predictive distributions across domains, we first introduce the notion of positive transferability for the assessment of synergy between the source and target domains in their prediction models, and we also propose a criterion to measure the positive transferability between sample pairs of different domains in terms of their prediction distributions. With the new measure, a predictive distribution matching (PDM) regularizer and a PDM framework learn the target classifier by favoring source data with large positive transferability while inferring the labels of target unlabeled data. Extensive experiments are conducted to validate the performance efficacy of the proposed PDM framework using several commonly used multidomain benchmark data sets, including Sentiment, Reuters, and Newsgroup, in the context of both binary-class and multiclass domains. Subsequently, the PDM framework is put to work on a real-world scenario pertaining to water cluster molecule identification. The experimental results illustrate the adverse impact of negative transfer on several state-of-the-art DA methods, whereas the proposed framework exhibits excellent and robust predicti- e performances.
Keywords :
pattern classification; pattern matching; regression analysis; statistical distributions; support vector machines; PDM framework; Reuters data sets; Sentiment data sets; binary-class domains; label information; labeled data; multiclass domains; multidomain benchmark data sets; negative transfer; newsgroup data sets; positive transferability; predictive distribution matching regularizer; robust predictive performances; source domain predictive distributions; state-of-the-art DA methods; synergy assessment; target classifier; target data prediction; target domain predictive distributions; water cluster molecule identification; Context; Manifolds; Media; Predictive models; Support vector machines; Training; Vectors; Domain adaptation (DA); logistic regression (LR); negative transfer; predictive distribution matching (PDM); support vector machines (SVMs);
fLanguage :
English
Journal_Title :
Cybernetics, IEEE Transactions on
Publisher :
ieee
ISSN :
2168-2267
Type :
jour
DOI :
10.1109/TSMCB.2012.2225102
Filename :
6365351
Link To Document :
بازگشت