DocumentCode
815500
Title
Blind Deconvolution Using a Variational Approach to Parameter, Image, and Blur Estimation
Author
Molina, Rafael ; Mateos, Javier ; Katsaggelos, Aggelos K.
Author_Institution
Departamento de Ciencias de la Computacion a I.A, Granada Univ.
Volume
15
Issue
12
fYear
2006
Firstpage
3715
Lastpage
3727
Abstract
Following the hierarchical Bayesian framework for blind deconvolution problems, in this paper, we propose the use of simultaneous autoregressions as prior distributions for both the image and blur, and gamma distributions for the unknown parameters (hyperparameters) of the priors and the image formation noise. We show how the gamma distributions on the unknown hyperparameters can be used to prevent the proposed blind deconvolution method from converging to undesirable image and blur estimates and also how these distributions can be inferred in realistic situations. We apply variational methods to approximate the posterior probability of the unknown image, blur, and hyperparameters and propose two different approximations of the posterior distribution. One of these approximations coincides with a classical blind deconvolution method. The proposed algorithms are tested experimentally and compared with existing blind deconvolution methods
Keywords
autoregressive processes; deconvolution; gamma distribution; image restoration; blind deconvolution method; gamma distributions; image formation noise; simultaneous autoregressions; undesirable blur estimation; variational approach; Bayesian methods; Convolution; Deconvolution; Degradation; Equations; Image converters; Image restoration; Parameter estimation; Testing; Ultrasonic imaging; Bayesian framework; blind deconvolution; parameter estimation; variational methods;
fLanguage
English
Journal_Title
Image Processing, IEEE Transactions on
Publisher
ieee
ISSN
1057-7149
Type
jour
DOI
10.1109/TIP.2006.881972
Filename
4011964
Link To Document