• DocumentCode
    820182
  • Title

    Multistate least-squares parameter estimators

  • Author

    Mendel, Jerry M.

  • Author_Institution
    University of Southern California, Los Angeles, CA, USA
  • Volume
    20
  • Issue
    6
  • fYear
    1975
  • fDate
    12/1/1975 12:00:00 AM
  • Firstpage
    775
  • Lastpage
    782
  • Abstract
    Multistage least-squares parameter estimation algorithms which are either recursive in the dimension of an assumed linear model, or both recursive in the model dimension and sequential in time are obtained. Different aspects of the following problems are considered. 1) Given a linear model, Z(k)= K(k)\\theta + V(k) , with n unknown parameters, \\theta , and datum {Z(k), K(k)} , obtain least-square estimators (LSE\´s) which are recursive in the dimension of \\theta . 2) Given the same conditions as in 1), a new measurement becomes available at time t_{k+1} , obtain a LSE for \\theta which is both recursive in the dimension of \\theta and sequential in t .
  • Keywords
    Least-squares estimation; Linear time-invariant (LTI) systems; Parameter estimation; Recursive estimation; Electrons; Gaussian processes; Iterative algorithms; Nonlinear control systems; Nonlinear dynamical systems; Parameter estimation; Signal to noise ratio; State estimation; System identification; Time varying systems;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/TAC.1975.1101106
  • Filename
    1101106