DocumentCode :
820865
Title :
An efficient algorithm for solving optimal control problems with linear terminal constraints
Author :
Sirisena, H.R. ; Chou, F.S.
Author_Institution :
University of Cantebury, Christchurch, New Zealand
Volume :
21
Issue :
2
fYear :
1976
fDate :
4/1/1976 12:00:00 AM
Firstpage :
275
Lastpage :
277
Abstract :
The optimization of nonlinear systems subject to linear terminal state variable constraints is considered. A technique for solving this class of problems is proposed that involves a piecewise polynomial parameterization of the system variables. The optimal control problem is thereby reduced to a linearly constrained parameter optimization problem which can be solved efficiently using the quadratically convergent Gold-farb-Lapidus algorithm. Illustrative numerical examples are presented.
Keywords :
Nonlinear systems, continuous-time; Optimal control; Constraint optimization; Control systems; Cost function; Differential equations; Electric variables control; Finite element methods; Nonlinear control systems; Nonlinear systems; Optimal control; Polynomials;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1976.1101176
Filename :
1101176
Link To Document :
بازگشت