• DocumentCode
    827945
  • Title

    Clustering via kernel decomposition

  • Author

    Szymkowiak-Have, A. ; Girolami, Mark A. ; Larsen, Jan

  • Author_Institution
    Informatics & Math. Modeling, Tech. Univ. of Denmark, Lyngby, Denmark
  • Volume
    17
  • Issue
    1
  • fYear
    2006
  • Firstpage
    256
  • Lastpage
    264
  • Abstract
    Spectral clustering methods were proposed recently which rely on the eigenvalue decomposition of an affinity matrix. In this letter, the affinity matrix is created from the elements of a nonparametric density estimator and then decomposed to obtain posterior probabilities of class membership. Hyperparameters are selected using standard cross-validation methods.
  • Keywords
    Markov processes; eigenvalues and eigenfunctions; principal component analysis; affinity matrix; eigenvalue decomposition; kernel decomposition; kernel principal component analysis; nonparametric density estimator; posterior probabilities; spectral clustering methods; standard cross-validation methods; Clustering methods; Data mining; Eigenvalues and eigenfunctions; Feature extraction; Informatics; Kernel; Mathematical model; Matrix decomposition; Parameter estimation; Principal component analysis; Aggregated Markov model; kernel decomposition; kernel principal component analysis (KPCA); spectral clustering;
  • fLanguage
    English
  • Journal_Title
    Neural Networks, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1045-9227
  • Type

    jour

  • DOI
    10.1109/TNN.2005.860840
  • Filename
    1593712