DocumentCode
827945
Title
Clustering via kernel decomposition
Author
Szymkowiak-Have, A. ; Girolami, Mark A. ; Larsen, Jan
Author_Institution
Informatics & Math. Modeling, Tech. Univ. of Denmark, Lyngby, Denmark
Volume
17
Issue
1
fYear
2006
Firstpage
256
Lastpage
264
Abstract
Spectral clustering methods were proposed recently which rely on the eigenvalue decomposition of an affinity matrix. In this letter, the affinity matrix is created from the elements of a nonparametric density estimator and then decomposed to obtain posterior probabilities of class membership. Hyperparameters are selected using standard cross-validation methods.
Keywords
Markov processes; eigenvalues and eigenfunctions; principal component analysis; affinity matrix; eigenvalue decomposition; kernel decomposition; kernel principal component analysis; nonparametric density estimator; posterior probabilities; spectral clustering methods; standard cross-validation methods; Clustering methods; Data mining; Eigenvalues and eigenfunctions; Feature extraction; Informatics; Kernel; Mathematical model; Matrix decomposition; Parameter estimation; Principal component analysis; Aggregated Markov model; kernel decomposition; kernel principal component analysis (KPCA); spectral clustering;
fLanguage
English
Journal_Title
Neural Networks, IEEE Transactions on
Publisher
ieee
ISSN
1045-9227
Type
jour
DOI
10.1109/TNN.2005.860840
Filename
1593712
Link To Document