DocumentCode :
828425
Title :
Role of material properties and drawing conditions in the fabrication of microstructured optical fibers
Author :
Xue, S.-C. ; Large, M.C.J. ; Barton, G.W. ; Tanner, R.I. ; Poladian, L. ; Lwin, R.
Author_Institution :
Sch. of Aerosp., Univ. of Sydney, NSW, Australia
Volume :
24
Issue :
2
fYear :
2006
Firstpage :
853
Lastpage :
860
Abstract :
In drawing microstructured optical fibers (MOFs), the cross-sectional hole structure, including holes´ relative size and shape, in a finished fiber drawn down from a preform can be different from that designed in the preform due to combined effects of draw tension and surface tension. As a result, the fiber´s optical properties relative to the initial design can be significantly altered. In order to find means of minimizing or exploiting hole deformation so that MOFs with desirable optical functionality can be fabricated, the underlying mechanism of hole deformation is analyzed by numerically investigating the continuous draw process of MOFs of different materials under different drawing conditions. It is found that three dimensionless numbers, i.e., 1) the capillary number (related to material properties), 2) the draw ratio, and 3) the aspect ratio (both related to the drawing conditions), can be used to predict the type of hole deformation. Silica and polymer materials are considered in particular, but the use of these dimensionless numbers allows the analysis to be applied to any other material.
Keywords :
capillarity; deformation; optical fibre fabrication; optical polymers; photonic crystals; preforms; silicon compounds; surface tension; SiO2; aspect ratio; capillary number; continuous draw process; cross-sectional hole structure; dimensionless numbers; draw tension; fiber drawing conditions; fiber optical properties; fiber preform; hole deformation; material properties; microstructured optical fibers; optical fiber design; optical fiber fabrication; optical functionality; photonic crystal fibers; polymer materials; silica materials; surface tension; Material properties; Optical design; Optical device fabrication; Optical fibers; Optical materials; Polymers; Preforms; Shape; Silicon compounds; Surface tension; Fiber fabrication; holey fibers; microstructured optical fibers (MOFs); numerical modeling;
fLanguage :
English
Journal_Title :
Lightwave Technology, Journal of
Publisher :
ieee
ISSN :
0733-8724
Type :
jour
DOI :
10.1109/JLT.2005.862427
Filename :
1593757
Link To Document :
بازگشت