Title :
On the nonexistence of rate-one generalized complex orthogonal designs
Author :
Liang, Xue-Bin ; Xia, Xiang-Gen
Author_Institution :
Dept. of Electr. & Comput. Eng., Louisiana State Univ., Baton Rouge, LA, USA
Abstract :
Orthogonal space-time block coding proposed recently by Alamouti (1998) and Tarokh et al. (1999) is a promising scheme for information transmission over Rayleigh-fading channels using multiple transmit antennas due to its favorable characteristics of having full transmit diversity and a decoupled maximum-likelihood (ML) decoding algorithm. Tarokh et al. extended the theory of classical orthogonal designs to the theory of generalized, real, or complex, linear processing orthogonal designs and then applied the theory of generalized orthogonal designs to construct space-time block codes (STBC) with the maximum possible diversity order while having a simple decoding algorithm for any given number of transmit and receive antennas. It has been known that the STBC constructed in this way can achieve the maximum possible rate of one for every number of transmit antennas using any arbitrary real constellation and for two transmit antennas using any arbitrary complex constellation. Contrary to this, in this correspondence we prove that there does not exist rate-one STBC from generalized complex linear processing orthogonal designs for more than two transmit antennas using any arbitrary complex constellation.
Keywords :
Rayleigh channels; block codes; diversity reception; maximum likelihood decoding; space-time codes; transmitting antennas; Rayleigh-fading channels; complex orthogonal designs; decoupled ML decoding; information transmission; linear processing; maximum-likelihood decoding; multiple transmit antennas; orthogonal space-time block coding; rate-one generalized designs; transmit diversity; Algorithm design and analysis; Antenna theory; Block codes; Constellation diagram; Delay; Maximum likelihood decoding; Process design; Rayleigh channels; Receiving antennas; Transmitting antennas;
Journal_Title :
Information Theory, IEEE Transactions on
DOI :
10.1109/TIT.2003.818396