DocumentCode :
83173
Title :
Thermal Deformation of Thermally Assisted Magnetic Recording Head in Binary Gas Mixture at Various Temperatures
Author :
Park, Kwon-Shik ; Choi, Jang-Young ; Park, Young-Pil ; Park, Nae-Chun
Author_Institution :
Center for Information Storage Device, , Yonsei University,, Seoul, Korea
Volume :
49
Issue :
6
fYear :
2013
fDate :
Jun-13
Firstpage :
2671
Lastpage :
2676
Abstract :
Helium-filled drives and thermally assisted magnetic recording (TAMR) systems are the most promising next-generation magnetic recording technologies. Currently, a fused TAMR system under helium- or air-helium-filled conditions is expected. In the fused system, it is important to accurately predict thermal deformation for a full TAMR head model and change of flying height (FH) at near filed transducer (NFT). In this paper, we first constructed an iterative coupled-field analysis process and a more realistic TAMR head model, including the NFT and even the epoxy components. The heat transfer coefficient was calculated using derived gas mixture properties. And the thermal deformation and protrusion of TAMR head was investigated for various temperature and helium fraction ratios. From the simulation results, the maximum temperature at the laser diode (LD decreased up to 20% due to changes in the heat transfer coefficient and environmental temperature. The epoxy effect induced by the LD heating was around 40%, which is in no way negligible. A thermal protrusion of 1.0–1.5 nm occurred at the NFT at various conditions. After considering the thermal deformation of the epoxy and the protrusion at the NFT, we found that the total FH was reduced with increasing helium fraction ratio and temperature.
Keywords :
Air-helium gas mixture; epoxy effect; heat transfer coefficient; thermal deformation; thermally assisted magnetic recording (TAMR);
fLanguage :
English
Journal_Title :
Magnetics, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9464
Type :
jour
DOI :
10.1109/TMAG.2013.2247985
Filename :
6522256
Link To Document :
بازگشت