• DocumentCode
    836675
  • Title

    Genetic algorithm-based parameter identification of a hysteretic brushless exciter model

  • Author

    Aliprantis, Dionysios C. ; Sudhoff, Scott D. ; Kuhn, Brian T.

  • Volume
    21
  • Issue
    1
  • fYear
    2006
  • fDate
    3/1/2006 12:00:00 AM
  • Firstpage
    148
  • Lastpage
    154
  • Abstract
    In this paper, a parameter identification procedure for a recently proposed hysteretic brushless exciter model is discussed. The model features average-value representation of all rectification modes, and incorporation of magnetic hysteresis in the d-axis main flux path using Preisach´s theory. Herein, a method for obtaining the model´s parameters from the waveforms of exciter field current and main alternator terminal voltage is set forth. In particular, a genetic algorithm is employed to solve the optimization problem of minimizing the model´s prediction error during a change in reference voltage level.
  • Keywords
    alternators; brushless machines; exciters; genetic algorithms; hysteresis motors; magnetic hysteresis; parameter estimation; rectifiers; Preisach theory; alternator terminal voltage; average-value representation; exciter field current; flux path; genetic algorithm-based parameter identification; hysteretic brushless exciter model; magnetic hysteresis; model prediction error; optimization problem; reference voltage level; Alternators; Genetic algorithms; Magnetic field measurement; Magnetic hysteresis; Parameter estimation; Power system modeling; Predictive models; Rotation measurement; Synchronous generators; Voltage; Brushless rotating machines; genetic algorithms (GAs); magnetic hysteresis; measurement; parameter estimation; synchronous generator excitation;
  • fLanguage
    English
  • Journal_Title
    Energy Conversion, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0885-8969
  • Type

    jour

  • DOI
    10.1109/TEC.2005.847967
  • Filename
    1597331