DocumentCode :
836798
Title :
A root-clustering theorem
Author :
Gutman, S. ; Shwartz, G.
Author_Institution :
Technion-Israel Institute of Technology, Haifa, Israel
Volume :
26
Issue :
4
fYear :
1981
fDate :
8/1/1981 12:00:00 AM
Firstpage :
940
Lastpage :
940
Abstract :
We consider the problem of root clustering of a real matrix in an algebraic region of the complex plane. It is shown that a criterion (previously obtained) based on an n^{2} \\times n^{2} matrix reduces to a criterion based on an frac{1}{2}n(n-1) \\times frac{1}{2}n(n-1) matrix. This is done for any transformable region and thus generalizes earlier results.
Keywords :
Matrices; Poles and zeros; Eigenvalues and eigenfunctions; Equations; Linear matrix inequalities; Polynomials; Symmetric matrices;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1981.1102762
Filename :
1102762
Link To Document :
بازگشت