DocumentCode :
839191
Title :
Geometric properties and invariant manifolds of the Riccati equation
Author :
Medanic, J.
Author_Institution :
Michailo Pupin Institute, Belgrade, Yugoslavia
Volume :
27
Issue :
3
fYear :
1982
fDate :
6/1/1982 12:00:00 AM
Firstpage :
670
Lastpage :
677
Abstract :
This short paper considers the general Riccati matrix differential equation. It reviews and extends results on the characterization and existence of equilibrium solutions, establishes that the Riccati equation has at most one stable equilibrium solution as t \\rightarrow \\infty or t \\rightarrow -\\infty , and confines the region of attraction to this unique stable equilibrium solution by identifying and utilizing linear and nonlinear invariant manifolds of the Riccati equation.
Keywords :
Differential Riccati equations; Riccati equations, differential; Control system synthesis; Estimation theory; Integral equations; Mathematics; Network synthesis; Nonlinear equations; Open loop systems; Optimal control; Riccati equations; Stability;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1982.1102989
Filename :
1102989
Link To Document :
بازگشت