DocumentCode :
840080
Title :
Kernel Entropy Component Analysis
Author :
Jenssen, Robert
Author_Institution :
Dept. of Phys. & Technol., Univ. of Tromsa, Tromsa, Norway
Volume :
32
Issue :
5
fYear :
2010
fDate :
5/1/2010 12:00:00 AM
Firstpage :
847
Lastpage :
860
Abstract :
We introduce kernel entropy component analysis (kernel ECA) as a new method for data transformation and dimensionality reduction. Kernel ECA reveals structure relating to the Renyi entropy of the input space data set, estimated via a kernel matrix using Parzen windowing. This is achieved by projections onto a subset of entropy preserving kernel principal component analysis (kernel PCA) axes. This subset does not need, in general, to correspond to the top eigenvalues of the kernel matrix, in contrast to the dimensionality reduction using kernel PCA. We show that kernel ECA may produce strikingly different transformed data sets compared to kernel PCA, with a distinct angle-based structure. A new spectral clustering algorithm utilizing this structure is developed with positive results. Furthermore, kernel ECA is shown to be an useful alternative for pattern denoising.
Keywords :
data structures; entropy; matrix algebra; pattern clustering; principal component analysis; Parzen windowing; Renyi entropy; angle-based structure; data transformation; dimensionality reduction; kernel entropy component analysis; kernel matrix; kernel principal component analysis; pattern denoising; spectral to clustering algorithm; Parzen windowing; Renyi entropy; Spectral data transformation; clustering; kernel PCA; pattern denoising.; Algorithms; Artificial Intelligence; Computer Simulation; Database Management Systems; Databases, Factual; Entropy; Information Storage and Retrieval; Models, Theoretical; Pattern Recognition, Automated;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/TPAMI.2009.100
Filename :
4912217
Link To Document :
بازگشت