• DocumentCode
    845233
  • Title

    Neuromorphic implementation of orientation hypercolumns

  • Author

    Choi, Thomas Yu Wing ; Merolla, Paul A. ; Arthur, John V. ; Boahen, Kwabena A. ; Shi, Bertram E.

  • Author_Institution
    Dept. of Electr. & Electron. Eng., Hong Kong Univ. of Sci. & Technol., China
  • Volume
    52
  • Issue
    6
  • fYear
    2005
  • fDate
    6/1/2005 12:00:00 AM
  • Firstpage
    1049
  • Lastpage
    1060
  • Abstract
    Neurons in the mammalian primary visual cortex are selective along multiple stimulus dimensions, including retinal position, spatial frequency, and orientation. Neurons tuned to different stimulus features but the same retinal position are grouped into retinotopic arrays of hypercolumns. This paper describes a neuromorphic implementation of orientation hypercolumns, which consists of a single silicon retina feeding multiple chips, each of which contains an array of neurons tuned to the same orientation and spatial frequency, but different retinal locations. All chips operate in continuous time, and communicate with each other using spikes transmitted by the address-event representation protocol. This system is modular in the sense that orientation coverage can be increased simply by adding more chips, and expandable in the sense that its output can be used to construct neurons tuned to other stimulus dimensions. We present measured results from the system, demonstrating neuronal selectivity along position, spatial frequency and orientation. We also demonstrate that the system supports recurrent feedback between neurons within one hypercolumn, even though they reside on different chips. The measured results from the system are in excellent concordance with theoretical predictions.
  • Keywords
    computer vision; image processing; mixed analogue-digital integrated circuits; neural chips; neurophysiology; visual perception; Gabor filter; address-event representation protocol; image processing; mammalian primary visual cortex; mixed analog-digital integrated circuits; multiple stimulus dimensions; neural chips; neuromorphic engineering; orientation hypercolumns; retinal position; retinotopic arrays; single silicon retina; spatial frequency; Biological systems; Brain modeling; Frequency; Neurofeedback; Neuromorphics; Neurons; Protocols; Retina; Semiconductor device measurement; Silicon; Address-event representation (AER); Gabor filter; image processing; mixed analog–digital integrated circuits; neural chips; neuromorphic engineering; visual cortex;
  • fLanguage
    English
  • Journal_Title
    Circuits and Systems I: Regular Papers, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1549-8328
  • Type

    jour

  • DOI
    10.1109/TCSI.2005.849136
  • Filename
    1440628