• DocumentCode
    848865
  • Title

    Stability of polynomials under coefficient perturbation

  • Author

    Bialas, S. ; Garloff, J.

  • Author_Institution
    Academy of Mining and Metallurgy, Crakow, Poland
  • Volume
    30
  • Issue
    3
  • fYear
    1985
  • fDate
    3/1/1985 12:00:00 AM
  • Firstpage
    310
  • Lastpage
    312
  • Abstract
    Let the real polynomial a_{0}x^{n} + a_{1}x^{n-1} + ... + a_{n-1}x + a_{n} be stable and let the real numbers b_{k}, c_{k} \\geq 0, 0 \\leq k \\leq n , be given. We present a simple determinant criterion for finding the largest t_{0} \\geq 0 such that the polynomial \\alpha _{0}x^{n} + \\alpha _{1}x^{n-1}+ ... +\\alpha _{n-1}x + \\alpha _{n} is stable for all \\alpha _{k} \\in (a_{k} - b_{k}t_{0}, a_{k} + C_{k}t_{0}) cup {a_{k}}, 0 \\leq k \\leq n . Several further observations allow us to reduce the computational cost considerably.
  • Keywords
    Perturbation methods; Polynomials; Stability; Convergence; Distributed parameter systems; Liquids; Optimal control; Partial differential equations; Polynomials; Stability; State estimation; Stochastic systems; Upper bound;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/TAC.1985.1103930
  • Filename
    1103930