DocumentCode :
849185
Title :
Adaptive control with the stochastic approximation algorithm: Geometry and convergence
Author :
Becker, A. ; Kumar, P.R. ; Wei, Ching-Zong
Author_Institution :
University of Maryland-Baltimore County, Cantonsville, MD, USA
Volume :
30
Issue :
4
fYear :
1985
fDate :
4/1/1985 12:00:00 AM
Firstpage :
330
Lastpage :
338
Abstract :
New geometric properties possessed by the sequence of parameter estimates are exhibited, which yield valuable insight into the behavior of the stochastic approximation based algorithm as it is used in minimum variance adaptive control. In particular, these geometric properties, together with certain probabilistic arguments, prove that if the system does not have a reduced-order minimum variance controller, then the parameter estimates converge to a random multiple of the true parameter. An explicit expression for the limiting parameter estimate is also available. With strictly positive probability, the limiting parameter estimate is not the true parameter, and in some cases differs from the true parameter with probability one. If the system possesses reduced-order minimum variance controllers, then convergence to a minimum variance controller in a Cesaro sense is shown. The geometry of the limit set is described. Sufficient conditions are also given for some of these results to hold for parameter estimation schemes other than stochastic approximation.
Keywords :
Adaptive control, linear systems; Parameter estimation, linear systems; Stochastic approximation; Adaptive control; Approximation algorithms; Control systems; Convergence; Geometry; Mathematics; Parameter estimation; Recursive estimation; Stochastic processes; Stochastic resonance;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1985.1103963
Filename :
1103963
Link To Document :
بازگشت