DocumentCode :
851774
Title :
Nonrectangular shaping and sizing of soft modules for floorplan-design improvement
Author :
Chu, Chris C N ; Young, Evangeline F Y
Author_Institution :
Dept. of Electr. & Comput. Eng., Iowa State Univ., Ames, IA, USA
Volume :
23
Issue :
1
fYear :
2004
Firstpage :
71
Lastpage :
79
Abstract :
Many previous works on floorplanning with nonrectangular modules assume that the modules are predesignated to have particular nonrectangular shapes, e.g., L-shaped, T-shaped, etc. However, this is not common in practice because rectangular shapes are more preferable in many designing steps. Those nonrectangular shapes are actually generated during floorplanning in order to further optimize the solution. In this paper, we study this problem of changing the shapes and dimensions of the flexible modules to fill up the unused area of a preliminary floorplan, while keeping the relative positions between the modules unchanged. This feature will also be useful in fixing small incremental changes during engineering change order modifications. We formulate the problem as a mathematical program. The formulation is such that the dimensions of all of the rectangular and nonrectangular modules can be computed by closed-form equations in O(m) time in each corresponding Lagrangian relaxation subproblem (LRS) where m is the total number of edges in the constraint graphs. As a result, the total time for the whole shaping and sizing process is O(k×m), where k is the number of iterations on the LRS. Experimental results show that the amount of area reused is 3.7% on average, while the total wirelength can be reduced by 0.43% on average because of the more compacted result packing.
Keywords :
circuit optimisation; integrated circuit layout; LRS iterations; Lagrangian relaxation subproblem; area reduction; closed-form equations; constraint graphs; floorplan-design improvement; floorplanning; optimization; rectangular shapes; rectilinear modules; soft module nonrectangular shaping; soft module nonrectangular sizing; wirelength reduction; Computer science; Delay; Equations; Integrated circuit interconnections; Lagrangian functions; Optimization methods; Routing; Shape; Timing;
fLanguage :
English
Journal_Title :
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
0278-0070
Type :
jour
DOI :
10.1109/TCAD.2003.819896
Filename :
1256057
Link To Document :
بازگشت