Title :
Robust Multiuser Interference Cancellation for OFDM Systems With Frequency Offset
Author :
Marabissi, Dania ; Fantacci, Romano ; Papini, Simone
Author_Institution :
Dept. of Electron. & Telecommun., Firenze Univ.
fDate :
11/1/2006 12:00:00 AM
Abstract :
In orthogonal frequency division multiple access systems clusters of subcarriers are assigned to different users for parallel data transmissions. The subcarriers are overlapped, but orthogonal to each other such that there is no intercarrier interference (ICI). However, synchronization errors among users cause the loss of the orthogonality and introduce ICI resulting in multiple-access interference. Synchronization between users is particularly difficult in the uplink channel where the user signals are potentially asynchronous and affected by different frequency offsets due to misalignment in carrier frequencies and Doppler shifts. This paper proposes a method to lower the effects of different frequency offsets among user signals in an OFDMA uplink system. The multiple access interference due to the user frequency misalignments is reduced by reconstructing and removing the interfering signals in the frequency domain. An approach based on the selective cancellation method, is proposed and its performance is analyzed by means of theoretical analysis and computer simulations. The effectiveness of the proposed system has been evaluated in the case of ideal and no-ideal frequency offset estimation and has been compared with that of the classical successive and parallel cancellation schemes. Simulation results show that the proposed approach allows performance close to the ideal case, i.e., with ideal frequency synchronization among users, with a low increase of the implementation complexity. Moreover, it is also highlighted here, that the successive cancellation method slightly outperforms the selective scheme, at the expense of a higher computational complexity and processing delay
Keywords :
OFDM modulation; computational complexity; data communication; frequency division multiple access; interference suppression; radio links; radiofrequency interference; synchronisation; Doppler shifts; OFDM systems; OFDMA uplink system; computational complexity; frequency offset; multiple-access interference; orthogonal frequency division multiple access systems; parallel data transmissions; processing delay; robust multiuser interference cancellation; selective cancellation method; synchronization errors; uplink channel; user frequency misalignments; Data communication; Doppler shift; Frequency conversion; Frequency estimation; Frequency synchronization; Interference cancellation; Multiple access interference; OFDM; Performance analysis; Robustness;
Journal_Title :
Wireless Communications, IEEE Transactions on
DOI :
10.1109/TWC.2006.04641