DocumentCode
854899
Title
Parameter estimation in Bayesian high-resolution image reconstruction with multisensors
Author
Molina, Rafael ; Vega, Miguel ; Abad, Javier ; Katsaggelos, Aggelos K.
Author_Institution
Dept. de Ciencias de la Computacion e I.A., Univ. de Granada, Spain
Volume
12
Issue
12
fYear
2003
Firstpage
1655
Lastpage
1667
Abstract
We consider the estimation of the unknown parameters for the problem of reconstructing a high-resolution image from multiple undersampled, shifted, degraded frames with subpixel displacement errors. We derive mathematical expressions for the iterative calculation of the maximum likelihood estimate of the unknown parameters given the low resolution observed images. These iterative procedures require the manipulation of block-semi circulant (BSC) matrices, that is, block matrices with circulant blocks. We show how these BSC matrices can be easily manipulated in order to calculate the unknown parameters. Finally the proposed method is tested on real and synthetic images.
Keywords
Bayes methods; image reconstruction; image resolution; iterative methods; matrix algebra; maximum likelihood estimation; sensor fusion; Bayesian high-resolution image reconstruction; Bayesian methods; block matrices; block-semi circulant matrices; circulant blocks; iterative calculation; maximum likelihood estimation; multiple frames; multisensors; parameter estimation; subpixel displacement errors; Bayesian methods; Charge-coupled image sensors; Degradation; Image reconstruction; Image resolution; Optical imaging; Parameter estimation; Pixel; Signal resolution; Signal to noise ratio;
fLanguage
English
Journal_Title
Image Processing, IEEE Transactions on
Publisher
ieee
ISSN
1057-7149
Type
jour
DOI
10.1109/TIP.2003.818117
Filename
1257401
Link To Document