DocumentCode :
859633
Title :
5-GHz 32-bit integer execution core in 130-nm dual-VT CMOS
Author :
Vangal, Sriram ; Anders, Mark A. ; Borkar, Nitin ; Seligman, Erik ; Govindarajulu, Venkatesh ; Erraguntla, Vasantha ; Wilson, Howard ; Pangal, Amaresh ; Veeramachaneni, Venkat ; Tschanz, James W. ; Ye, Yibin ; Somasekhar, Dinesh ; Bloechel, Bradley A. ; D
Author_Institution :
Circuits Res., Intel Corp., Hillsboro, OR, USA
Volume :
37
Issue :
11
fYear :
2002
fDate :
11/1/2002 12:00:00 AM
Firstpage :
1421
Lastpage :
1432
Abstract :
A 32-bit integer execution core containing a Han-Carlson arithmetic-logic unit (ALU), an 8-entry × 2 ALU instruction scheduler loop and a 32-entry × 32-bit register file is described. In a 130 nm six-metal, dual-VT CMOS technology, the 2.3 mm2 prototype contains 160 K transistors. Measurements demonstrate capability for 5-GHz single-cycle integer execution at 25°C. The single-ended, leakage-tolerant dynamic scheme used in the ALU and scheduler enables up to 9-wide ORs with 23% critical path speed improvement and 40% active leakage power reduction when compared to a conventional Kogge-Stone implementation. On-chip body-bias circuits provide additional performance improvement or leakage tolerance. Stack node preconditioning improves ALU performance by 10%. At 5 GHz, ALU power is 95 mW at 0.95 V and the register file consumes 172 mW at 1.37 V. The ALU performance is scalable to 6.5 GHz at 1.1 V and to 10 GHz at 1.7 V, 25°C.
Keywords :
CMOS logic circuits; VLSI; integrated circuit design; logic design; microprocessor chips; very high speed integrated circuits; 0.95 to 1.7 V; 130 nm; 172 mW; 25 degC; 32 bit; 5 to 10 GHz; 95 mW; ALU instruction scheduler loop; CMOS digital IC; FIFO design; Han-Carlson ALU; active leakage power reduction; arithmetic logic unit; critical path speed improvement; dual-VT CMOS technology; integer execution core; leakage tolerance; leakage-tolerant dynamic scheme; microprocessors; on-chip body-bias circuits; register file; single-cycle integer execution; single-ended dynamic scheme; six-metal CMOS technology; stack node preconditioning; Associate members; CMOS technology; Circuits; Delay; Microprocessors; Processor scheduling; Prototypes; Radio frequency; Registers; Throughput;
fLanguage :
English
Journal_Title :
Solid-State Circuits, IEEE Journal of
Publisher :
ieee
ISSN :
0018-9200
Type :
jour
DOI :
10.1109/JSSC.2002.803944
Filename :
1046084
Link To Document :
بازگشت