• DocumentCode
    861364
  • Title

    Robust, reduced-order, nonstrictly proper state estimation via the optimal projection equations with guaranteed cost bounds

  • Author

    Haddad, Wassim M. ; Bernstein, Dennis S.

  • Author_Institution
    Dept. of Mech. Eng., Florida Inst. of Technol., Melbourne, FL, USA
  • Volume
    33
  • Issue
    6
  • fYear
    1988
  • fDate
    6/1/1988 12:00:00 AM
  • Firstpage
    591
  • Lastpage
    595
  • Abstract
    A state estimation design problem involving parametric plant uncertainties is considered. An estimation error bound suggested by multiplicative white-noise modeling is utilized for guaranteeing robust estimation over a specified range of parameter uncertainties. Necessary conditions that generalize the optimal projection equations for reduced-order state estimation are used to characterize the estimator that minimizes the error bound. The design equations thus effectively serve as sufficient conditions for synthesizing robust estimators. Additional features include the presence of a static estimation gain in conjunction with the dynamic (Kalman) estimator to obtain a nonstrictly proper estimator
  • Keywords
    matrix algebra; state estimation; guaranteed cost bounds; matrix algebra; multiplicative white-noise modeling; optimal projection equations; state estimation; Equations; Estimation error; Filtering; Kalman filters; Noise robustness; Nonlinear filters; State estimation; Uncertain systems; Uncertainty; White noise;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/9.1261
  • Filename
    1261