• DocumentCode
    861545
  • Title

    Advances in the crystal growth of semi-insulating CdZnTe for radiation detector applications

  • Author

    Szeles, Csaba ; Cameron, Scott E. ; Ndap, Jean-Olivier ; Chalmers, William C.

  • Author_Institution
    eV PRODUCTS, II-VI Inc., Saxonburg, PA, USA
  • Volume
    49
  • Issue
    5
  • fYear
    2002
  • fDate
    10/1/2002 12:00:00 AM
  • Firstpage
    2535
  • Lastpage
    2540
  • Abstract
    The growth of large-volume semi-insulating CdZnTe single crystals with improved structural perfection has been demonstrated by the electrodynamic gradient (EDG) technique and active control of the Cd partial pressure in the ampoule. The EDG furnace nearly completely eliminates the uncontrolled radiative heat transport commonly encountered in traditional Bridgman systems where the charge and furnace move relative to each other. Since the new furnace utilizes electronically controlled high-precision gradient translation, it achieves superior thermal stability throughout the growth. The control of the Cd partial pressure allowed the solidification and cool-down of the ingots close to the stoichiometric composition. As a result, the formation and incorporation of large-size (≥1 μm diameter) Te inclusions was avoided during crystallization and ingots with high structural perfection were achieved. Adequate electrical compensation has been achieved in most of the crystal growth experiments yielding CdZnTe crystals with bulk electrical resistivity in the 109-1010 Ω·cm range and electron mobility-lifetime product as high as μτe=1.2×10-3 cm2/V. The materials exhibit good spectral performance in the parallel plate detector configuration.
  • Keywords
    II-VI semiconductors; cadmium compounds; carrier lifetime; crystal growth from melt; electron mobility; inclusions; tellurium compounds; zinc compounds; 1 micron; Cd partial pressure; CdZnTe; CdZnTe detector; Te inclusions; crystal growth; crystallization; electrical resistivity; electrodynamic gradient; electron mobility-lifetime product; solidification; stoichiometric; Crystallization; Crystals; Electric resistance; Electrodynamics; Furnaces; Pressure control; Radiation detectors; Tellurium; Temperature control; Thermal stability;
  • fLanguage
    English
  • Journal_Title
    Nuclear Science, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9499
  • Type

    jour

  • DOI
    10.1109/TNS.2002.803882
  • Filename
    1046782