• DocumentCode
    877100
  • Title

    Supercapacitor thermal- and electrical-behaviour modelling using ANN

  • Author

    Marie-Francoise, J.-N. ; Gualous, H. ; Berthon, A.

  • Author_Institution
    Univ. de Franche-Comte, Besancon, France
  • Volume
    153
  • Issue
    2
  • fYear
    2006
  • fDate
    3/2/2006 12:00:00 AM
  • Firstpage
    255
  • Lastpage
    262
  • Abstract
    The paper presents the development of a modelling tool for evaluation of the thermal and electrical behaviour of supercapacitors, using an artificial neural network (ANN). The principle consists of a black-box multiple-input single-output (MISO) model. The system inputs are temperature, current and supercapacitor values, and the output is the supercapacitor voltage. The relationship between inputs and output is established by the learning and the validation of the ANN model from experimental charge and discharge cycles of supercapacitors at different currents and different temperatures. Once the training parameters are known, the ANN simulator can predict different operational parameters of the supercapacitors. The update parameters of the ANN model are performed using the Levenberg-Marquardt method to minimise the error between the output of the system and the predicted output. This methodology using ANN networks may provide useful information on the transient behaviour of the supercapacitors taking into account thermal influences. Experimental results will also validate the simulation results.
  • Keywords
    learning (artificial intelligence); neural nets; power engineering computing; supercapacitors; transients; ANN simulator; Levenberg-Marquardt method; artificial neural network; black-box multiple-input single-output model; charge cycle; discharge cycle; electrical behaviour; error minimisation; supercapacitor; thermal behaviour; training parameters; transient behaviour;
  • fLanguage
    English
  • Journal_Title
    Electric Power Applications, IEE Proceedings -
  • Publisher
    iet
  • ISSN
    1350-2352
  • Type

    jour

  • DOI
    10.1049/ip-epa:20050096
  • Filename
    1608663