DocumentCode :
883784
Title :
Number of multiplications necessary to compute length-2n two-dimensional discrete Hartley transform DHT (2n; 2)
Author :
Ma, Wann-Jiun
Author_Institution :
Dept. of Electr. & Electron. Eng., South China Univ. of Technol., China
Volume :
28
Issue :
5
fYear :
1992
Firstpage :
480
Lastpage :
482
Abstract :
The multiplicative complexity of the two-dimensional discrete Hartley transform (2D DHT) of size 2n*2n, where n is a positive integer, is determined. The method of deviation is based on linear congruences and a ring structure. The minimal number of real multiplications necessary to compute a length-2n two-dimensional discrete Hartley transform over the field Q of rational numbers is 22n+11-6(n-1)2n-8. DHT (2n; 2) has the same multiplicative complexity as a corresponding real data 2D-DFT.
Keywords :
computational complexity; signal processing; transforms; 2D DHT; linear congruences; multiplicative complexity; ring structure; two-dimensional discrete Hartley transform;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el:19920303
Filename :
126449
Link To Document :
بازگشت