DocumentCode :
888536
Title :
Scaling of the discrete-time algebraic Riccati equation to enhance stability of the Schur solution method
Author :
Gudmundsson, Thorkell ; Kenney, Charles ; Laub, Alan J.
Author_Institution :
Dept. of Electr. & Comput. Eng., California Univ., Santa Barbara, CA, USA
Volume :
37
Issue :
4
fYear :
1992
fDate :
4/1/1992 12:00:00 AM
Firstpage :
513
Lastpage :
518
Abstract :
A simple scaling procedure for discrete-time Riccati equations is introduced. This procedure eliminates instabilities which can be associated with the linear equation solution step of the generalized Schur method without changing the condition of the underlying problem. A computable bound for the relative error of the solution of the Riccati equation is also derived.<>
Keywords :
algebra; stability; Schur solution method; discrete-time algebraic Riccati equation; relative error; scaling procedure; stability; Eigenvalues and eigenfunctions; Error correction; Linear systems; Military computing; Parameter estimation; Riccati equations; Stability; Upper bound; Vectors; Yield estimation;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.126589
Filename :
126589
Link To Document :
بازگشت