Title :
Evolutionary programming using mutations based on the Levy probability distribution
Author :
Lee, Chang-Yong ; Yao, Xin
Author_Institution :
Dept. of Ind. Inf., Kongju Nat. Univ., Chungnam, South Korea
Abstract :
Studies evolutionary programming with mutations based on the Levy probability distribution. The Levy probability distribution has an infinite second moment and is, therefore, more likely to generate an offspring that is farther away from its parent than the commonly employed Gaussian mutation. Such likelihood depends on a parameter α in the Levy distribution. We propose an evolutionary programming algorithm using adaptive as well as nonadaptive Levy mutations. The proposed algorithm was applied to multivariate functional optimization. Empirical evidence shows that, in the case of functions having many local optima, the performance of the proposed algorithm was better than that of classical evolutionary programming using Gaussian mutation.
Keywords :
evolutionary computation; optimisation; probability; Levy probability distribution; evolutionary optimization; evolutionary programming; mean-square displacement; multivariate functional optimization; nonadaptive mutations; Biology computing; Electronic switching systems; Evolution (biology); Evolutionary computation; Fractals; Functional programming; Genetic algorithms; Genetic mutations; Genetic programming; Probability distribution;
Journal_Title :
Evolutionary Computation, IEEE Transactions on
DOI :
10.1109/TEVC.2003.816583