• DocumentCode
    893192
  • Title

    Maximum a posteriori estimation of multichannel Bernoulli-Gaussian sequences

  • Author

    Dai, Guan-Zhong ; Mendel, Jerry M.

  • Volume
    35
  • Issue
    1
  • fYear
    1989
  • fDate
    1/1/1989 12:00:00 AM
  • Firstpage
    181
  • Lastpage
    183
  • Abstract
    General problems and solutions are described for maximum a posteriori estimation of multichannel Bernoulli-Gaussian sequences, which are inputs to a linear discrete-time multivariable system. The authors first develop a separation principle, which indicates that one can estimate multichannel Gaussian amplitudes and Bernoulli events separately. They then discuss approaches for estimation of these quantities
  • Keywords
    discrete time systems; estimation theory; information theory; linear systems; multivariable systems; Bernoulli events; information theory; linear discrete-time multivariable system; maximum a posteriori estimation; multichannel Bernoulli-Gaussian sequences; multichannel Gaussian amplitudes; separation principle; Amplitude estimation; Computer science; Deconvolution; Gaussian noise; Helium; MIMO; Maximum a posteriori estimation; Noise measurement; State estimation; Vectors;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/18.42189
  • Filename
    42189