DocumentCode :
893734
Title :
The Selective Random Subspace Predictor for Traffic Flow Forecasting
Author :
Sun, Shiliang ; Zhang, Changshui
Author_Institution :
Dept. of Autom., Tsinghua Univ., Beijing
Volume :
8
Issue :
2
fYear :
2007
fDate :
6/1/2007 12:00:00 AM
Firstpage :
367
Lastpage :
373
Abstract :
Traffic flow forecasting is an important issue for the application of Intelligent Transportation Systems. Due to practical limitations, traffic flow data may be incomplete (partially missing or substantially contaminated by noises), which will aggravate the difficulties for traffic flow forecasting. In this paper, a new approach, termed the selective random subspace predictor (SRSP), is developed, which is capable of implementing traffic flow forecasting effectively whether incomplete data exist or not. It integrates the entire spatial and temporal traffic flow information in a transportation network to carry out traffic flow forecasting. To forecast the traffic flow at an object road link, the Pearson correlation coefficient is adopted to select some candidate input variables that compose the selective input space. Then, a number of subsets of the input variables in the selective input space are randomly selected to, respectively, serve as specific inputs for prediction. The multiple outputs are combined through a fusion methodology to make final decisions. Both theoretical analysis and experimental results demonstrate the effectiveness and robustness of the SRSP for traffic flow forecasting, whether for complete data or for incomplete data
Keywords :
forecasting theory; road traffic; traffic engineering computing; intelligent transportation systems; object road link; selective random subspace predictor; traffic flow forecasting; Control systems; Input variables; Intelligent transportation systems; Predictive models; Road transportation; Robustness; Signal processing; Sun; Telecommunication traffic; Traffic control; Correlation coefficient; random subspace; subset selection; traffic flow forecasting;
fLanguage :
English
Journal_Title :
Intelligent Transportation Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
1524-9050
Type :
jour
DOI :
10.1109/TITS.2006.888603
Filename :
4220666
Link To Document :
بازگشت