DocumentCode :
894937
Title :
Maximum likelihood estimation in linear models with a Gaussian model matrix
Author :
Wiesel, Ami ; Eldar, Yonina C. ; Beck, Amir
Author_Institution :
Dept. of Electr. Eng., Israel Inst. of Technol., Haifa, Israel
Volume :
13
Issue :
5
fYear :
2006
fDate :
5/1/2006 12:00:00 AM
Firstpage :
292
Lastpage :
295
Abstract :
We consider the problem of estimating an unknown deterministic parameter vector in a linear model with a Gaussian model matrix. We derive the maximum likelihood (ML) estimator for this problem and show that it can be found using a simple line-search over a unimodal function that can be efficiently evaluated. We then discuss the similarity between the ML, the total least squares (TLS), the regularized TLS, and the expected least squares estimators.
Keywords :
Gaussian processes; matrix algebra; maximum likelihood estimation; multidimensional signal processing; search problems; Gaussian model matrix; TLS; line-search; linear model; maximum likelihood estimator; total least square; unimodal function; Ambient intelligence; Array signal processing; Gaussian noise; Least squares approximation; Maximum likelihood estimation; Minimax techniques; Robustness; Statistics; Uncertainty; Vectors; Errors in variables (EIV); linear models; maximum likelihood (ML) estimation; random model matrix; total least squares (TLS);
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/LSP.2006.870377
Filename :
1618700
Link To Document :
بازگشت