• DocumentCode
    896344
  • Title

    On the Georgiou-Lindquist approach to constrained Kullback-Leibler approximation of spectral densities

  • Author

    Pavon, Michele ; Ferrante, Augusto

  • Author_Institution
    Dipt. di Matematica Pura ed Applicata, Univ. di Padova, Italy
  • Volume
    51
  • Issue
    4
  • fYear
    2006
  • fDate
    4/1/2006 12:00:00 AM
  • Firstpage
    639
  • Lastpage
    644
  • Abstract
    We consider the Georgiou-Lindquist constrained approximation of spectra in the Kullback-Leibler sense. We propose an alternative iterative algorithm to solve the corresponding convex optimization problem. The Lagrange multiplier is computed as a fixed point of a nonlinear matricial map. Simulation indicates that the algorithm is extremely effective.
  • Keywords
    approximation theory; duality (mathematics); iterative methods; matrix algebra; Kullback-Leibler pseudodistance; Lagrange multiplier; convex optimization; iterative algorithm; nonlinear matricial map; spectral densities; Computational modeling; Frequency; Iterative algorithms; Lagrangian functions; Process control; Signal processing; Signal processing algorithms; Signal resolution; State estimation; Statistics; Approximation of spectral densities; Kullback–Leibler pseudodistance; convex optimization; fixed point; spectral estimation;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/TAC.2006.872755
  • Filename
    1618839