• DocumentCode
    896385
  • Title

    Conjugate convex Lyapunov functions for dual linear differential inclusions

  • Author

    Goebel, Rafal ; Teel, Andrew R. ; Hu, Tingshu ; Lin, Zongli

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Univ. of California, Santa Barbara, CA, USA
  • Volume
    51
  • Issue
    4
  • fYear
    2006
  • fDate
    4/1/2006 12:00:00 AM
  • Firstpage
    661
  • Lastpage
    666
  • Abstract
    Tools from convex analysis are used to show how stability properties and Lyapunov inequalities translate when passing from a linear differential inclusion (LDI) to its dual. In particular, it is proved that a convex, positive definite function is a Lyapunov function for an LDI if and only if its convex conjugate is a Lyapunov function for the LDIs dual. Examples show how such duality effectively doubles the number of tools available for assessing stability of LDIs.
  • Keywords
    Lyapunov methods; duality (mathematics); stability; Lyapunov inequalities; conjugate convex Lyapunov functions; convex analysis; convex positive definite function; dual linear differential inclusions; stability properties; Linear matrix inequalities; Linear systems; Lyapunov method; Polynomials; Stability analysis; Stability criteria; Sufficient conditions; Symmetric matrices; Convex conjugate functions; Lyapunov functions; duality; linear differential inclusions (LDIs);
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/TAC.2006.872764
  • Filename
    1618844