• DocumentCode
    896422
  • Title

    Optimal linear estimation and data fusion

  • Author

    Elliott, Robert J. ; Van Der Hoek, John

  • Author_Institution
    Haskayne Sch. of Bus., Univ. of Calgary, Alta., Canada
  • Volume
    51
  • Issue
    4
  • fYear
    2006
  • fDate
    4/1/2006 12:00:00 AM
  • Firstpage
    686
  • Lastpage
    689
  • Abstract
    Optimal mean square linear estimators are determined for general uncorrelated noise. We allow the noise variance matrix in the observation process to be singular. This requires properties of generalized inverses which are developed in Section II. The proofs appear to be new. When there are two observation sequences the optimal method of recursively fusing the two is determined. We derive a new formula for the covariance of the two estimates which then provides exact dynamics for a fused estimate.
  • Keywords
    filtering theory; matrix algebra; noise; sensor fusion; statistical analysis; data fusion; general uncorrelated noise; generalized inverses; noise variance matrix; observation process; optimal mean square linear estimation; Covariance matrix; Gaussian noise; Information filtering; Information filters; Mathematics; Nonlinear filters; Particle filters; Random variables; Recursive estimation; Vectors; Data fusion; optimal linear estimation;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/TAC.2006.872768
  • Filename
    1618848