• DocumentCode
    897618
  • Title

    Learning a simple recurrent neural state space model to behave like Chua´s double scroll

  • Author

    Suykens, Johan A K ; Vandewalle, Joos

  • Author_Institution
    Dept. of Electr. Eng., Katholieke Univ., Leuven, Belgium
  • Volume
    42
  • Issue
    8
  • fYear
    1995
  • fDate
    8/1/1995 12:00:00 AM
  • Firstpage
    499
  • Lastpage
    502
  • Abstract
    The authors present a simple discrete time autonomous neural state space model (recurrent network) that behaves like Chua´s double scroll. The model is identified using Narendra´s dynamic back propagation procedure. Learning is done in “packets” of increasing time horizon
  • Keywords
    Chua´s circuit; backpropagation; chaos; circuit stability; discrete time systems; identification; nonlinear network analysis; nonlinear systems; recurrent neural nets; state-space methods; Chua double scroll; discrete time autonomous model; dynamic back propagation procedure; recurrent network; recurrent neural state space model; Asymptotic stability; Circuit stability; Linear algebra; Matrices; Neural networks; Nonlinear systems; Polynomials; State-space methods; Sufficient conditions; Testing;
  • fLanguage
    English
  • Journal_Title
    Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1057-7122
  • Type

    jour

  • DOI
    10.1109/81.404066
  • Filename
    404066