• DocumentCode
    898910
  • Title

    Absolute Radiometric In-Flight Validation of Mid Infrared and Thermal Infrared Data From ASTER and MODIS on the Terra Spacecraft Using the Lake Tahoe, CA/NV, USA, Automated Validation Site

  • Author

    Hook, Simon J. ; Vaughan, R. Greg ; Tonooka, Hideyuki ; Schladow, S. Geoffrey

  • Author_Institution
    NASA Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA
  • Volume
    45
  • Issue
    6
  • fYear
    2007
  • fDate
    6/1/2007 12:00:00 AM
  • Firstpage
    1798
  • Lastpage
    1807
  • Abstract
    In December 1999, the first Moderate Resolution Imaging Spectroradiometer (MODIS) instrument and an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument were launched into polar orbit on the Terra spacecraft. Both instruments measure surface radiance, which requires that they are calibrated and validated in flight. In-flight validation is essential to independently verify that instrument calibration correctly compensates for any changes in instrument response over time. In order to meet this requirement, an automated validation site was established at Lake Tahoe on the California/Nevada border in 1999 to validate the ASTER and MODIS thermal infrared (TIR, 7-13 mum) and MODIS mid infrared (MIR, 3-5 mum) land-monitoring channels. Daytime and nighttime data were used to validate the TIR channels, and only nighttime data were used to validate the MIR channels to avoid any reflected solar contribution. Sixty-nine ASTER scenes and 155 MODIS-Terra scenes acquired between years 2000 and 2005 with near-nadir views were validated. The percent differences between the predicted and instrument at-sensor radiances for ASTER channels 10-14 were 0.165plusmn0.776, 0.103plusmn0.613, -0.305plusmn0.613, -0.252plusmn0.464, and -0.118plusmn0.489, respectively. The percent differences for MODIS-Terra channels 20, 22, 23, 29, 31, and 32 were -1.375plusmn0.973, -1.743plusmn1.027, -0.898plusmn0.970, 0.082plusmn0.631, 0.044plusmn0.541, and 0.151plusmn0.563, respectively. The results indicate that the TIR at-sensor radiances from ASTER and MODIS-Terra have met the preflight radiometric calibration accuracy specification and provide well-calibrated data sets that are suitable for measuring absolute change. The results also show that the at-sensor radiances from the MODIS-Terra MIR channels have greater bias than expected based on the preflight radiometric calibration accuracy specification
  • Keywords
    geophysical equipment; radiometry; 3 to 5 micron; 7 to 13 micron; AD 1999 12; ASTER; Advanced Spaceborne Thermal Emission and Reflection Radiometer; California-Nevada border; Lake Tahoe; MODIS; Moderate Resolution Imaging Spectroradiometer; Terra Spacecraft; surface radiance; Calibration; Extraterrestrial measurements; Instruments; Lakes; Layout; MODIS; Radiometry; Reflection; Space vehicles; Time factors; Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER); Moderate Resolution Imaging Spectroradiometer (MODIS); Tahoe; infrared; thermal; validation;
  • fLanguage
    English
  • Journal_Title
    Geoscience and Remote Sensing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0196-2892
  • Type

    jour

  • DOI
    10.1109/TGRS.2007.894564
  • Filename
    4231350