• DocumentCode
    900324
  • Title

    Estimating the standard deviation from extreme Gaussian values

  • Author

    Stark, Henry ; Brankov, Jovan G.

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Illinois Inst. of Technol., Chicago, IL, USA
  • Volume
    11
  • Issue
    3
  • fYear
    2004
  • fDate
    3/1/2004 12:00:00 AM
  • Firstpage
    320
  • Lastpage
    322
  • Abstract
    We derive an estimator for the standard deviation of a Gaussian random variable that uses the maximum of two observations on the random variables. The process is repeated until the variance of the estimator or the degree of confidence reaches a predetermined level. The estimator is unbiased and consistent, and its variance is only marginally larger than the standard square root of the sum of the squares estimator. Moreover the computation of an estimate requires only a sequence of comparisons of two numbers followed by an addition.
  • Keywords
    Gaussian distribution; maximum likelihood estimation; normal distribution; Gaussian distribution; degree of confidence; estimator variance; extreme Gaussian random variable; extreme value distribution; normal distribution; square estimator; standard deviation estimation; Distribution functions; Equations; Gaussian distribution; Maximum likelihood estimation; Probability density function; Random variables; Reactive power; Yield estimation;
  • fLanguage
    English
  • Journal_Title
    Signal Processing Letters, IEEE
  • Publisher
    ieee
  • ISSN
    1070-9908
  • Type

    jour

  • DOI
    10.1109/LSP.2003.821728
  • Filename
    1268018