DocumentCode :
900740
Title :
Weighted Parzen windows for pattern classification
Author :
Babich, Gregory A. ; Camps, Octavia I.
Author_Institution :
Appl. Res. Lab., Pennsylvania State Univ., University Park, PA, USA
Volume :
18
Issue :
5
fYear :
1996
fDate :
5/1/1996 12:00:00 AM
Firstpage :
567
Lastpage :
570
Abstract :
This paper introduces the weighted-Parzen-window classifier. The proposed technique uses a clustering procedure to find a set of reference vectors and weights which are used to approximate the Parzen-window (kernel-estimator) classifier. The weighted-Parzen-window classifier requires less computation and storage than the full Parzen-window classifier. Experimental results showed that significant savings could be achieved with only minimal, if any, error rate degradation for synthetic and real data sets
Keywords :
approximation theory; estimation theory; image classification; probability; Bayes error; clustering; discriminant analysis; error rate degradation; nonparametric classifiers; pattern classification; training samples; weighted Parzen windows; Degradation; Density functional theory; Entropy; Error analysis; Kernel; Monitoring; Pattern analysis; Pattern classification; Pattern recognition; Training data;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/34.494647
Filename :
494647
Link To Document :
بازگشت