• DocumentCode
    905155
  • Title

    On the Values of Kloosterman Sums

  • Author

    Shparlinski, Igor E.

  • Author_Institution
    Dept. of Comput., Macquarie Univ., Sydney, NSW
  • Volume
    55
  • Issue
    6
  • fYear
    2009
  • fDate
    6/1/2009 12:00:00 AM
  • Firstpage
    2599
  • Lastpage
    2601
  • Abstract
    Given a prime p and a positive integer n, we show that the shifted Kloosterman sums SigmaxisinF p nPsi(x + alphaxpn-2)=SigmaxisinF* p nPsi(x+alphax-1)+1, alphaisinF*pn where Psi is a nontrivial additive character of a finite field Fpn of pn elements, do not vanish if alpha belongs to a small subfield Fpm sube Fpn. This complements recent results of P. Charpin and G. Gong which in turn were motivated by some applications to bent functions.
  • Keywords
    Galois fields; cryptography; number theory; Kloosterman sum; bent function; cryptography; finite field; positive integer; prime number; Codes; Cryptography; Galois fields; Polynomials; Bent functions; Kloosterman sums; Lucas and Lehmer numbers;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2009.2018320
  • Filename
    4957645