• DocumentCode
    922762
  • Title

    Bayes estimation with asymmetrical cost functions (Corresp.)

  • Author

    Papantoni-Kazakos, P.

  • Volume
    21
  • Issue
    1
  • fYear
    1975
  • fDate
    1/1/1975 12:00:00 AM
  • Firstpage
    93
  • Lastpage
    95
  • Abstract
    It is known that under certain restrictions on the posterior density and assigned cost function, the Bayes estimate of a random parameter is the conditional mean. The restrictions on the cost function are that it must be a symmetric convex upward function of the difference between the parameter and the estimate. In this correspondence, asymmetrical cost functions of the following form are examined: begin{equation} C(a, hat{a})= begin{cases} f_1(a- hat{a}),& a geq hat{a} \\ f_2(hat{a}- a),& a < hat{a} end{cases} end{equation} where f_1(\\cdot), f_2(\\cdot) are both twice-differentiable convex upward positive functions on [0, \\infty ] that intersect the origin. It is shown that for posterior densities satisfying a certain symmetry condition, the biased Bayes estimate is a generalized median. Furthermore, for linear polynomial functions f_1(\\cdot), f_2(\\cdot) , the unbiased Bayes estimate is shown to be the conditional mean.
  • Keywords
    Bayes procedures; Parameter estimation; Additive noise; Cost function; Electrons; Estimation theory; Gaussian noise; Impedance matching; Matched filters; Parameter estimation; Polynomials; Sufficient conditions;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.1975.1055326
  • Filename
    1055326