• DocumentCode
    925191
  • Title

    Phase-staggering control of a series-resonant DC-DC converter with paralleled power modules

  • Author

    Klaassens, J.B. ; De Chateleux, W. L F H A Moize ; van Wesenbeeck, M.P.N.

  • Author_Institution
    Fac. of Electr. Eng., Delft Univ. of Technol., Netherlands
  • Volume
    3
  • Issue
    2
  • fYear
    1988
  • fDate
    4/1/1988 12:00:00 AM
  • Firstpage
    164
  • Lastpage
    173
  • Abstract
    A method of decreasing the ripple on the output voltage of high-power AC-DC or DC-DC series-resonant converters without increasing the internal converter frequency or the capacity of the energy storage elements is discussed. This improvement is accomplished by subdividing the converter into two or more series-resonant power modules operated with a constant relative phase shift (phase-staggering control). The method of eliminating the harmonic components in the input and output currents of the conversion system, without increasing the internal pulse frequency, is justified by Fourier analysis of the current waveforms. The frequency spectra of the source and output waveforms for the continuous and discontinuous resonant current mode are shifted to higher frequency ranges, as computations show for both one single module and multiple paralleled modules. Inadequacies in the phase-staggering control method applied to series-resonant converters are indicated in relation to the dominant harmonic component, in particular for two modules and supported by experimentally acquired waveforms. High-frequency current components to the source and to the load are reduced. Resulting in smaller input and output filters. This improves the resolution of the control of the flow of energy from the source to the load, resulting in a faster system response
  • Keywords
    Fourier analysis; phase control; power convertors; AC-DC converters; Fourier analysis; constant relative phase shift; continuous resonant current mode; current waveforms; discontinuous resonant current mode; energy flow control; energy storage elements; frequency spectra; paralleled power modules; phase-staggering control; series-resonant DC-DC converter; Analog-digital conversion; Concurrent computing; DC-DC power converters; Energy storage; Frequency conversion; Harmonic analysis; Multichip modules; Power harmonic filters; Resonance; Voltage;
  • fLanguage
    English
  • Journal_Title
    Power Electronics, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0885-8993
  • Type

    jour

  • DOI
    10.1109/63.4346
  • Filename
    4346