• DocumentCode
    929499
  • Title

    A/sup */ search: an efficient and flexible approach to materialized view selection

  • Author

    Gou, Gang ; Yu, Jeffrey Xu ; Lu, Hongjun

  • Volume
    36
  • Issue
    3
  • fYear
    2006
  • fDate
    5/1/2006 12:00:00 AM
  • Firstpage
    411
  • Lastpage
    425
  • Abstract
    Decision support systems issue a large number of online analytical processing (OLAP) queries to access very large databases. A data warehouse needs to precompute or materialize some of such OLAP queries in order to improve the system throughput, since many coming queries can benefit greatly from these materialized views. Materialized view selection with resource constraint is one of the most important issues in the management of data warehouses. It addresses how to fully utilize the limited resource, disk space, or maintenance time to minimize the total query processing cost. This paper revisits the problem of materialized view selection under a disk-space constraint S. Many efficient greedy algorithms have been developed to address this problem. The quality of greedy solutions is guaranteed by a lower bound. However, it is observed that, when S is small, this lower bound can be very small and even be negative. In such cases, their solution quality will not be guaranteed well. In order to improve further the solution quality in such cases, a new competitive A* algorithm is proposed. It is shown that it is just the distinctive topological structure of the dependent lattice that makes the A* search a very competitive strategy for this problem. Both theoretical and experimental results show that the proposed algorithm is a powerful, efficient, and flexible approach to this problem
  • Keywords
    constraint handling; data mining; data warehouses; decision support systems; greedy algorithms; query processing; A* search algorithm; OLAP; data management; data warehouse; decision support systems; disk-space constraint; greedy algorithm; materialized view selection; online analytical processing; query processing; very large databases; Business; Companies; Computer science; Data warehouses; Lattices; Research and development management; Resource management; Systems engineering and theory; Throughput; Transaction databases; materialized view selection; online analytical processing (OLAP);
  • fLanguage
    English
  • Journal_Title
    Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1094-6977
  • Type

    jour

  • DOI
    10.1109/TSMCC.2004.843248
  • Filename
    1629205