DocumentCode :
930418
Title :
A comparison of the Delsarte and Lovász bounds
Author :
Schrijver, Alexander
Volume :
25
Issue :
4
fYear :
1979
fDate :
7/1/1979 12:00:00 AM
Firstpage :
425
Lastpage :
429
Abstract :
Delsarte\´s linear programming bound (an upper bound on the cardinality of cliques in association schemes) is compared with Lovacute{a}sz\´s \\theta -function bound (an upper bound on the Shannon capacity of a graph). The two bounds can be treated in a uniform fashion. Delsarte\´s linear programming bound can be generalized to a bound \\theta \\prime (G) on the independence number \\propto (G) of an arbitrary graph G , such that \\theta \\prime (G) \\leq \\theta(G) . On the other hand, if the edge set of G is a union of classes of a symmetric association scheme, \\theta(G) may be calculated by linear programming, For such graphs the product \\theta(G) . \\theta(G) is equal to the number of vertices of G .
Keywords :
Graph theory; Information rates; Linear programming; Codes; Eigenvalues and eigenfunctions; Hamming distance; Helium; Linear programming; Polynomials; Upper bound;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1979.1056072
Filename :
1056072
Link To Document :
بازگشت