DocumentCode
930589
Title
On the strong information singularity of certain stationary processes (Corresp.)
Author
Hajek, Bruce
Volume
25
Issue
5
fYear
1979
fDate
9/1/1979 12:00:00 AM
Firstpage
605
Lastpage
609
Abstract
In an exploratory paper, T. Berger studied discrete random processes which generate information slower than linearly with time. One of his objectives was to provide a physically meaningful definition of a deterministic process, and to this end he introduced the notion of strong information singularity. His work is supplemented by demonstrating that a large class of convariance stationary processes are strongly information singular with respect to a class of stationary Gaussian processes. One important consequence is that for a large class of covariance stationary processes the information rate equals that of the process associated with the Brownian motion component of the spectral representation. In an exploratory paper, T. Berger studied discrete random processes which generate information slower than linearly with time. One of his objectives was to provide a physically meaningful definition of a deterministic process, and to this end he introduced the notion of strong information singularity. His work is supplemented by demonstrating that a large class of convariance stationary processes are strongly information singular with respect to a class of stationary Gaussian processes. One important consequence is that for a large class of covariance stationary processes the information rate equals that of the process associated with the Brownian motion component of the spectral representation. In an exploratory paper, T. Berger studied discrete random In an exploratory paper, T. Berger studied discrete random processes which generate information slower than linearly with time. One of his objectives was to provide a physically meaningful definition of a deterministic process, and to this end he introduced the notion of strong information singularity. His work is supplemented by demonstrating that a large class of convariance stationary processes are strongly information singular with respect to a class of stationary Gaussian processes. One important consequence is that for a large class of covariance stationary processes the information rate equals that of the process associated with the Brownian motion component of the spectral representation.
Keywords
Information theory; Source coding; Stochastic processes; Block codes; Decoding; Entropy; Gaussian processes; Information rates; Noise measurement; Random processes;
fLanguage
English
Journal_Title
Information Theory, IEEE Transactions on
Publisher
ieee
ISSN
0018-9448
Type
jour
DOI
10.1109/TIT.1979.1056088
Filename
1056088
Link To Document