DocumentCode :
9321
Title :
Discrete Geometric Approach for the Three-Dimensional Schrödinger Problem and Comparison With Finite Elements
Author :
Specogna, Ruben ; Trevisan, F.
Author_Institution :
Dipt. di Ing. Elettr., Gestionale e Meccanica, Univ. di Udine, Udine, Italy
Volume :
50
Issue :
2
fYear :
2014
fDate :
Feb. 2014
Firstpage :
189
Lastpage :
192
Abstract :
The numerical modeling of nanoscale electron devices needs the development of accurate and efficient numerical methods, in particular, for the numerical solution of the Schrödinger problem. If FEMs allow an accurate geometric representation of the device, they lead to a discrete counterpart of Schrödinger problem in terms of a computationally heavy generalized eigenvalue problem. Exploiting the geometric structure behind the Schrödinger problem, we will construct a numerically efficient discrete counterpart of it, yielding to a standard eigenvalue problem. We will also show how the two approaches are only partially akin to each other even when lumping is applied.
Keywords :
MOSFET; Schrodinger equation; eigenvalues and eigenfunctions; finite element analysis; nanoelectronics; semiconductor device models; FEM; FinFETs; computationally heavy generalized eigenvalue problem; discrete geometric approach; finite element analysis; geometric structure; nanoscale electron devices; numerical methods; semiconductor device modeling; three-dimensional Schrödinger problem; Eigenvalues and eigenfunctions; Finite element analysis; Iron; Mathematical model; Matrices; Standards; Vectors; FEM; Schrodinger equation; nanoelectronics; semiconductor device modeling;
fLanguage :
English
Journal_Title :
Magnetics, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9464
Type :
jour
DOI :
10.1109/TMAG.2013.2281073
Filename :
6749187
Link To Document :
بازگشت