DocumentCode
933022
Title
Interactive Search by Direct Manipulation of Dissimilarity Space
Author
Nguyen, Giang P. ; Worring, Marcel ; Smeulders, Arnold W M
Author_Institution
Amsterdam Univ., Amsterdam
Volume
9
Issue
7
fYear
2007
Firstpage
1404
Lastpage
1415
Abstract
In this paper, we argue to learn dissimilarity for interactive search in content based image retrieval. In literature, dissimilarity is often learned via the feature space by feature selection, feature weighting or by adjusting the parameters of a function of the features. Other than existing techniques, we use feedback to adjust the dissimilarity space independent of feature space. This has the great advantage that it manipulates dissimilarity directly. To create a dissimilarity space, we use the method proposed by Pekalska and Duin, selecting a set of images called prototypes and computing distances to those prototypes for all images in the collection. After the user gives feedback, we apply active learning with a one-class support vector machine to decide the movement of images such that relevant images stay close together while irrelevant ones are pushed away (the work of Guo ). The dissimilarity space is then adjusted accordingly. Results on a Corel dataset of 10000 images and a TrecVid collection of 43907 keyframes show that our proposed approach is not only intuitive, it also significantly improves the retrieval performance.
Keywords
content-based retrieval; image retrieval; support vector machines; content based image retrieval; direct manipulation; dissimilarity space; interactive search; retrieval performance; support vector machine; Active learning; dissimilarity learning; interactive image search; visualization;
fLanguage
English
Journal_Title
Multimedia, IEEE Transactions on
Publisher
ieee
ISSN
1520-9210
Type
jour
DOI
10.1109/TMM.2007.906586
Filename
4351909
Link To Document