Title :
On the Euclidean distance of images
Author :
Wang, Liwei ; Zhang, Yan ; Feng, Jufu
Author_Institution :
Sch. of Electron. Eng. & Comput. Sci., Peking Univ., Beijing, China
Abstract :
We present a new Euclidean distance for images, which we call image Euclidean distance (IMED). Unlike the traditional Euclidean distance, IMED takes into account the spatial relationships of pixels. Therefore, it is robust to small perturbation of images. We argue that IMED is the only intuitively reasonable Euclidean distance for images. IMED is then applied to image recognition. The key advantage of this distance measure is that it can be embedded in most image classification techniques such as SVM, LDA, and PCA. The embedding is rather efficient by involving a transformation referred to as standardizing transform (ST). We show that ST is a transform domain smoothing. Using the face recognition technology (FERET) database and two state-of-the-art face identification algorithms, we demonstrate a consistent performance improvement of the algorithms embedded with the new metric over their original versions.
Keywords :
computer vision; geometry; image classification; visual databases; face recognition technology database; image Euclidean distance; image classification techniques; image recognition; standardizing transform; state-of-the-art face identification algorithms; transform domain smoothing; Euclidean distance; Face recognition; Image classification; Image recognition; Linear discriminant analysis; Principal component analysis; Robustness; Smoothing methods; Support vector machine classification; Support vector machines; Euclidean distance; Index Terms- Image metric; face recognition; positive definite function.; Algorithms; Artificial Intelligence; Biometry; Cluster Analysis; Computer Simulation; Face; Humans; Image Enhancement; Image Interpretation, Computer-Assisted; Information Storage and Retrieval; Models, Biological; Models, Statistical; Pattern Recognition, Automated; Subtraction Technique;
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
DOI :
10.1109/TPAMI.2005.165