DocumentCode :
941334
Title :
High responsivity InP-InGaAs quantum-well infrared photodetectors: characteristics and focal plane array performance
Author :
Cellek, O.O. ; Ozer, S. ; Besikci, C.
Author_Institution :
Electr. Eng. Dept., Middle East Tech. Univ., Ankara, Turkey
Volume :
41
Issue :
7
fYear :
2005
fDate :
7/1/2005 12:00:00 AM
Firstpage :
980
Lastpage :
985
Abstract :
We report the detailed characteristics of long-wavelength infrared InP-In0.53Ga0.47As quantum-well infrared photodetectors (QWIPs) and 640×512 focal plane array (FPA) grown by molecular beam epitaxy. For reliable assessment of the detector performance, characterization was performed on test detectors of the same size and structure with the FPA pixels. Al0.27Ga0.73As-GaAs QWIPs with similar spectral response (λp=∼7.8 μm) were also fabricated and characterized for comparison. InP-InGaAs QWIPs (20-period) yielded quantum efficiency-gain product as high as 0.46 under -3-V bias with a 77-K peak detectivity above 1×1010 cm·Hz12//W. At 70 K, the detector performance is background limited with f/2 aperture up to ∼ 3-V bias where the peak responsivity (2.9 A/W) is an order of magnitude higher than that of the AlGaAs-GaAs QWIP. The results show that impact ionization in similar InP-InGaAs QWIPs does not start until the average electric-field reaches ∼25 kV/cm, and the detectivity remains high under moderately large bias, which yields high responsivity due to large photoconductive gain. The InP-InGaAs QWIP FPA offers reasonably low noise equivalent temperature difference (NETD) even with very short integration times (τ).70 K NETD values of the FPA with f/1.5 optics are 36 and 64 mK under bias voltages of -0.5 V (τ=11 ms) and -2 V (τ=650 μs), respectively. The results clearly show the potential of InP-InGaAs QWIPs for thermal imaging applications requiring high responsivity and short integration times.
Keywords :
III-V semiconductors; aluminium compounds; focal planes; gallium arsenide; impact ionisation; indium compounds; molecular beam epitaxial growth; photoconductivity; photodetectors; quantum well devices; semiconductor device noise; semiconductor device reliability; semiconductor device testing; semiconductor growth; Al0.27Ga0.73As-GaAs; Al0.27Ga0.73As-GaAs QWIP; FPA; InP-In0.53Ga0.47As; InP-In0.53Ga0.47As quantum-well infrared photodetectors; NETD; QWIP; focal plane array; impact ionization; integration times; molecular beam epitaxy; noise equivalent temperature difference; peak detectivity; peak responsivity; photoconductive gain; quantum efficiency-gain product; reliability; spectral response; Apertures; Detectors; Impact ionization; Molecular beam epitaxial growth; Optical noise; Performance evaluation; Photoconductivity; Photodetectors; Quantum wells; Testing; Infrared detector; focal plane array (FPA);
fLanguage :
English
Journal_Title :
Quantum Electronics, IEEE Journal of
Publisher :
ieee
ISSN :
0018-9197
Type :
jour
DOI :
10.1109/JQE.2005.848947
Filename :
1453722
Link To Document :
بازگشت