DocumentCode :
941564
Title :
An upper bound for codes for the noisy two-access binary adder channel (Corresp.)
Author :
Van Tilborg, Henk C A
Volume :
32
Issue :
3
fYear :
1986
fDate :
5/1/1986 12:00:00 AM
Firstpage :
436
Lastpage :
440
Abstract :
Using earlier methods a combinatorial upper bound is derived for |C|. \\cdot |D| , where (C,D) is a \\delta -decodable code pair for the noisy two-access binary adder channel. Asymptotically, this bound reduces to R_{1}=R_{2} \\leq frac{3}{2} + e\\log _{2} e - (frac{1}{2} + e) \\log _{2} (1 + 2e) = frac{1}{2} - e + H(frac{1}{2} - e) - frac{1}{2}H(2e), where e = \\lfloor (\\delta - 1)/2 \\rfloor /n, n \\rightarrow \\infty and R_{1} resp. R_{2} is the rate of the code C resp. D .
Keywords :
Coding/decoding; Multiaccess communication; Channel capacity; Codes; Filters; Gaussian channels; Gaussian processes; Information theory; Roentgenium; Stochastic resonance; TV; Upper bound;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1986.1057173
Filename :
1057173
Link To Document :
بازگشت