Title :
Affine invariant extended cyclic codes over Galois rings
Author :
Dey, Bikash Kumar ; Rajan, B. Sundar
Author_Institution :
Int. Inst. of Inf. Technol., Hyderabad, India
fDate :
4/1/2004 12:00:00 AM
Abstract :
Recently, Blackford and Ray-Chaudhuri used transform domain techniques to permutation groups of cyclic codes over Galois rings. They used the same technique to find a set of necessary and sufficient conditions for extended cyclic codes of length 2m over any subring of GR(4,m) to be affine invariant. Here, we use the same technique to find a set of necessary and sufficient conditions for extended cyclic codes of length pm over any subring of GR(pe,m) to be affine invariant, for e=2 with arbitrary p and for p=2 with arbitrary e. These are used to find two new classes of affine invariant Bose-Chaudhuri-Hocquenghem (BCH) and generalized Reed-Muller (GRM) codes over Z2e for arbitrary e and a class of affine invariant BCH codes over Zp2 for arbitrary prime p.
Keywords :
BCH codes; Galois fields; Reed-Muller codes; cyclic codes; BCH code; Bose-Chaudhuri-Hocquenghem code; GRM code; Galois ring; affine invariant code; automorphism group; code length; extended cyclic code; generalized Reed-Muller code; permutation group; transform domain technique; Binary codes; Decoding; Galois fields; Information technology; Information theory; Linear code; Polynomials; Sufficient conditions;
Journal_Title :
Information Theory, IEEE Transactions on
DOI :
10.1109/TIT.2004.825044