Title :
Multiscale Joint Segmentation and Registration of Image Morphology
Author :
Droske, Marc ; Rumpf, Martin
Author_Institution :
Univ. of Bonn, Bonn
Abstract :
Multimodal image registration significantly benefits from previous denoising and structure segmentation and vice versa. In particular, combined information of different image modalities makes segmentation significantly more robust. Indeed, fundamental tasks in image processing are highly interdependent. A variational approach is presented, which combines the detection of corresponding edges, an edge preserving denoising, and the morphological registration via a nonrigid deformation for a pair of images with structural correspondence. The morphology of an image function is split into a singular part consisting of the edge set and a regular part represented by the field of normals on the ensemble of level sets. A Mumford-Shah type free discontinuity problem is applied to treat the singular morphology and the matching of corresponding edges under the deformation. The matching of the regular morphology is quantified by a second contribution, which compares deformed normals and normals at deformed positions. Finally, a nonlinear elastic energy controls the deformation itself and ensures smoothness and injectivity. A multiscale approach that is based on a phase field approximation leads to an effective and efficient algorithm. Numerical experiments underline the robustness of the presented approach and show applications on medical images.
Keywords :
approximation theory; edge detection; finite element analysis; image denoising; image reconstruction; image registration; image segmentation; mathematical morphology; medical image processing; Mumford-Shah type free discontinuity problem; edge detection; edge preserving denoising; finite element discretization; image denoising; image morphology; image nonrigid deformation; medical image processing; multimodal image registration; multiscale joint image segmentation; multiscale phase field approximation; nonlinear elastic energy control; Mumford-Shah approach; finite element discretization; image morphology; multiscale phase field approximation; non-rigid multimodal registration; nonlinear elasticity; Algorithms; Artificial Intelligence; Computer Simulation; Image Enhancement; Image Interpretation, Computer-Assisted; Models, Biological; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity; Subtraction Technique;
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
DOI :
10.1109/TPAMI.2007.1120